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$ FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, 
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Received 31 January 1980, in final form 19 May 1980 

Abstract. A model consisting of a hydrogen atom coupled to a single quantised radiation 
mode in the long-wavelength approximation is studied mathematically. It is shown that the 
Hamiltonian H for this model is dilatation analytic. This result makes it possible to describe 
various resonance phenomena associated with atoms in radiation fields by means of analytic 
continuation techniques. Furthermore, it is shown that H possesses an infinite number of 
bound states with negative energy. Nevertheless the photoionisation probability tends to 
one with increasing field strength. 

1. Introduction 

The development of lasers capable of producing very intense monochromatic radiation 
fields has led to an increasing interest in the properties of atomic systems placed in such 
fields. A proper theoretical description of atomic processes in intense fields should 
preferably not be of a perturbative nature with respect to the atom-field interaction 
and/or the field intensity, in order to facilitate the study of the asymptotic behaviour of 
the various possible processes in the high field intensity limit. 

In the present work we study, from the mathematical point of view, one of the 
simplest possible systems: a ‘model’ H-atom coupled to a single quantised radiation 
mode in the long-wavelength approximation. In this approach the field intensity comes 
in through the initial state of the radiation mode, but the properties of the Hamiltonian 
are independent of the field. This is different when the field is treated classically. Then 
the Hamiltonian is time-dependent and the notion of bound states becomes somewhat 
more complicated. We comment further on this matter in 5 5. The model considered 
here can describe physical processes such as multi-photon ionisation phenomena and 
free-free transitions (see a recent review by Gavrila and van der Wiel (1978)). The 
scattering of photons from an atom is outside its scope, since asymptotically free photon 
wave-packets can only be constructed if a continuum of field modes is available. This 
drawback is inherent to all model systems pertaining to a finite or countably infinite 
number of radiation modes (e.g. in box-normalised radiation fields). A treatment of 
atomic systems coupled to a continuum of field modes, however, leads to complicated 
structures in terms of infinite tensor products even if infrared and ultraviolet cut-offs are 
made (Cook 1961, Blanchard 1969). If an atomic system is subjected to a strong 
single-mode laser field, then the initial field state will contain photon states with 
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energies centred in a small band around the central laser frequency. It is then natural to 
approximate this situation by a single-mode model and to neglect all other radiation 
modes. A more precise description of this procedure would of course be desirable, but 
will probably have to wait until the rigorous theory for continua of field modes is more 
fully developed. 

We also assume the atomic nucleus to be infinitely heavy and we discard the spin 
degrees of freedom. In addition, we replace the actual vector potential A(x)  by its value 
at x = 0, i.e. we make a long-wavelength approximation. This excludes the description 
of various physical processes. On the other hand, for laser frequencies in the optical 
region, the relevant parameter, atomic dimension/field wavelength, is of the order of 

The present work is organised in the following way. In 0 2 we define our model. 
Basically we deal with a system describing a fictitious particle in a five-dimensional 
configuration space. In three dimensions it feels a Coulomb attraction, whereas in the 
other two it is confined by a harmonic potential (see equations (2.10)). The latter, of 
course, originates from the field Hamiltonian (two dimensions since there are two 
possible polarisations). In principle, bound states can exist with positive energy (the 
sum of atomic and oscillator eigenvalues). The interaction between atom and field, 
however, can change this and in general such bound states can be expected to turn into 
resonances. One way of studying this mechanism is to use the machinery of dilatation 
analyticity (see Simon (1973) for the application to autoionising atomic states), and 
indeed one of our results is the applicability of the dilatation method to the present 
model (86  3 and 4). This gives some information about the spectral properties of the 
Hamiltonian for the model; results which are complemented in § 5 by showing that the 
coupling between atom and field does not wipe out all bound states. In fact, there is an 
infinite number of bound states with negative energy, in contradistinction with the 
DC-Stark effect case where no bound states survive. Still, one may expect ionisation 
probabilities to tend to unity with increasing field strength since, as also shown in 0 5 ,  
the overlap between the above bound states and the initial states, usually encountered 
in multi-photon processes, tends to zero with increasing photon number in the initial 
state. The paper ends with a discussion section where, among other things, we point out 
some applications and generalisations. In summary, we have obtained the following 
results. The Hamiltonian of the model, H, is dilatation analytic. This property makes it 
possible to apply analytic continuation techniques to the description of photoionisation 
processes and similar phenomena such as free-free transitions. Secondly, H possesses 
an infinite number of bound states. Nevertheless the photoionisation probability tends 
to unity with increasing field intensity (i.e. increasing occupation number of the initial 
field state). 

Some recent related literature is Rosenberg (1979), where various other aspects of 
the same model are discussed, and Brodsky (1979), where the field is treated classically. 
The complex dilated harmonic oscillator, finally, has been considered earlier by van 
Winter (1980). 

In the present work the notions relative boundedness and relative compactness 
occur frequently. The latter, in particular, is of considerable importance since relatively 
compact perturbations of an operator leave its essential spectrum, ueSs, invariant (the 
essential spectrum of an operator is its full spectrum with the exception of (Td, the 
discrete spectrum, i.e. the isolated eigenvalues with finite degeneracy). For a full 
treatment of these and other concepts used in the present paper we refer to Kat0 (1966) 
and Reed and Simon (1972, 1975, 1978). 

or smaller, so that such processes will be of lesser importance. 
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2. Definition of the model 

We consider an electron moving in an attractive Coulomb field (centred around the 
origin) and at the same time coupled to a quantised radiation mode. The Hamiltonian 
of this system is formally given by (in MKSA units) 

H = ( h 2 / 2 m ) [ p  - ( e / h ) A  (x)]' + V ( x )  + Hf (2 .1)  
where x, p = -i a,, e and m are the electronic position vector, momentum (in units h),  
charge and mass, respectively. V ( x )  represents the Coulomb potential, V ( x )  = 
- Z e 2 / ( 4 m 0 ( x l )  (2 = 1 for hydrogen) and A ( x )  is the vector potential in the Coulomb 
gauge. Its usual box-normalised form is 

(2 .2 )  A ( X )  = [ h / ( 2 e o ~  ) I  

Here eo is the dielectric constant, Wk = clkl, k = 27rn/L, ni = 0,  f 1 ,  * 2 ,  . . . , j = 1 , 2 , 3 .  
a k A  and a t  are annihilation and creation operators obeying the commutation relations 

3 1 / 2  
( w k ) - l l 2 [ a k A  exp(ik. x> + ak exp( - ik.  x ) ]  . eA (k). 

k J  

[ a k h ,  at'A'] = Skk'SAA' (2.3) 

and eA(k) ,  A = 1 , 2 ,  are the two polarisation vectors orthogonal to k and to each other. 
The free field Hamiltonian Hf is given by 

In our model only a single field mode is retained, i.e. in the summation over k in (2 .2)  
and (2 .4 )  all terms but one are dropped. Thus a single photon carries a momentum hk, 
whereas L is the photon wavelength: w L  = 2 m .  We also make a long-wavelength (or 
dipole) approximation, that is, we replace A ( x )  by its value at x = 0 so that now 

2 
3 1/2 A = [h/(2eowL )] (aA  + a f ) e A .  

A = l  

We now express the creation and annihilation operators in terms of fictitious position 
and momentum operators x2 and p2. Since there are only two polarisation directions, 
the latter have only two components, which we take along the X and Y axes so that k is 
directed along the Z axis: 

x 2 A  = t i f i ( a A  - a: ), p2A =; f i (aA  +a:) .  (2 .6 )  

x = aoxl, P = ai lp1,  L = aoZ, w = [h/(mat)]&, 

We introduce atomic units according to 

where 

a. = 4 m o h 2 / ( m e 2 )  and cy = e 2 / ( 4 m o h c )  

are the Bohr radius and fine-structure constant, respectively. Thus 
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We note in passing that the addition of a specific second field mode, namely the one 
associated with opposite momentum ( -  fik instead of f ik) ,  is easily incorporated. A 
convenient choice of field cocrdinates and momenta then results in a Hamiltonian of the 
form (2.7) with a second, independent, oscillator part added. Thus the study of its 
spectral properties directly reduces to that of (2.7). 

It is a straightforward matter to establish the self-adjointness of fi on its natural 
domain. We do not go into this, but bring it to a different form by making a canonical 
transformation that removes the cross-term p 1 .  p z  giving rise to a different coordinate 
dependence of V (see, however, P 6.1). It consists of a simplified form of a well known 
type of transformation (bilinear in particle momentum and the Hertz vector) that goes 
back to Breit and Kramers (Kramers 1950). Thus with 

U(A) = exp( - ihpl . XZ), 

we have (notation FI = h, PIZ, P I &  

&A) = U ( A  ) f i ~ ( ~  I-' 

A = CT/(& +U'), (2.8) 

= f(1 + S2)-'(p:, +&) + t p : 3  + V(x1- Axz)  + ;&1+ S 2 ) p : + f x :  - 13, 

(2.9) 
where 

SZ = C T 2 / &  = a 2 / ( d ) ,  so that A =p/ ( l+S2)  

with 
2 1 / 2  

P = b3/(2.n 11 9 

Although it is possible to carry through our further analysis starting from (2.9) (after 
some suitable scaling the only difference is a replacement of the central Coulomb 
potential by a potential having ellipsoidal equipotential surfaces), it is consistent with 
the assumptions made so far to neglect S 2  in this expression: we have already supposed 
the field wavelength to be large as compared with atomic dimensions, i.e. I >> 1. But 
then S2 = a2 / (d )<<  I-'<< 1. In this way, we finally arrive at the Hamiltonian (we delete 
the tildes from now on) 

H = $ p i +  V ( x ~ - p ~ ~ ) + ~ [ f ( p ~ + ~ ~ ) -  13. (2.10) 

H =Ho+ V ( X ~ - P X ~ )  (2.11) 

H = Hi + W(x1, XZ) (2.12) 

In view of our further discussion it is convenient to write H as 

or as 

(2.13) 

Both in (2.7) and in (2.12) we encounter a system consisting of a hydrogen atom and a 
harmonic oscillator which interact through a coupling term. In (2.7) it is the 'Hughes- 
Eckart type' term, up1 . p z ,  whereas in (2.12) it is the potential W(xl, xz). The form 
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(2.12), however, has the advantage that W possesses relative compactness properties, 
as will be discussed in 5 4. The spectrum of H I  can be simply described. It consists of 
sums of atomic (E,) and oscillator ( l w ,  1 = 0, 1,2, . . .) eigenvalues E,,/ = E ,  + lw, as well as 
a continuous spectrum covering the positive real axis with branches starting at fw, 1 = 0, 
1,2,  . . . . Clearly there are many continuum-embedded eigenvalues, which are likely to 
turn into resonances under the perturbation W. A similar situation is encountered in 
dealing with atomic autoionising states where the Coulomb repulsion plays the role of 
W. 

3. Dilatation analyticity and the harmonic oscillator 

As a necessary preliminary for the study of the dilatation-analytic properties of the 
Hamiltonian (2. lo), we discuss here these properties for the n-dimensional harmonic 
oscillator. The results are also relevant €or other problems where harmonic oscillator 
Hamiltonians appear. Examples are systems with coupled scattering and confining 
channels, as found in molecular predissociation and non-relativistic quark-confinement 
models. Dilatation analyticity in its original form (Aguilar and Combes 1971) is centred 
around the notion of relatively compact potentials with respect to p 2 ,  p = -ia, on 
L2(R") .  Since the harmonic oscillator potential lacks this property, we need here a 
more general definition of dilatation analyticity. 

The dilatation group on L2(R" )  is the group 

{u(e)} = {exp[$ie(x. p + p . XI], e E R} (3.1) 
of unitary operators. We have ( U ( 8 ) f )  (x) = exp(n8/2)f(eex) for L2(R" ) .  

Definition. Let H be self-adjoint with domain 9 c L2(R" ) ,  and suppose that 9 is 
invariant under U ( @ )  for each 8 E W ,  so that the family ( H ( 8 )  = U(e)HU-'(e),  8 ER} is 
a family of self-adjoint operators with common domain. We shall say that H is 
dilatation analytic and {H(8) ,  8 E A} is a dilatation analytic family in an open set A c C 
if H ( 8 )  can be given a meaning for 8 E A c C such that {H(8) ,  8 E A} is a self-adjoint 
holomorphic family of type A in Kato's sense (Kato 1966, ch 7). 

Let the number operator N on L 2 ( R " )  be given by 

N = $(x2 + p 2 )  - in. (3.2) 
It represents the Hamiltonian of the n-dimensional isotropic harmonic oscillator 
modulo a multiplicative constant. Let { u L ( x ) ,  k = 1 ,2 , .  . . } be the set of normalised 
one-dimensional harmonic oscillator eigenfunctions (Hermite functions). The eigen- 
functions U I ( X )  (I = {11,12, . . . , I,}) and corresponding eigenvalues A I  of N are then 
given by 

(3.3) 

N defines a sei€-adjoint operator on L2(W") with domain Ed. If we write the Hermite 
expansion of f E L'(R ") as 

f(x) = c frur(x), (3.4) 
I 

then 9 consists of those f for which f 2 1 f r I 2  is finite. 
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Proposition; 9 is invariant under transformations of the dilatation group. 

Proof. In order to keep the bookkeeping simple we sketch a proof for the one- 
dimensional case. We note that ur(8)= U(O)u/, 8 real, is contained in 9 and, using 
recursion relations, 

m ( e )  = Arur-2(e) +Blur(e) + c1ur+2(e) (3.5) 

where AI, Br and Cr are O(l) (notation u1 E 0, l  S 0). 
Now let f~ 9. Then 

m m 

(3.6) 

Next we calculate Nf"(8) using (3.5). In view of the O(l)  property of At, BI and Cr, we 
find that (K is a positive constant) 

IINfm(e)-Nfn(e)llsK "2' 1 2 l f i l 2 .  
/ = n - 2  

Thus Nf"(8) is norm convergent, and since N is closed it follows that f(8) E 9. 
Let N ( 8 )  = U(B)NU-'(O). It has the explicit form 

0 

N ( e )  = I[exp(28)x2 + exp( - 28)p2] - In, e a .  (3.7) 

Theorem. N is dilatation analytic. The members of the dilatation analytic family { N ( e ) }  
are those for which IIm 81 < ~ / 4 .  

Proof. We write N(e)=$exp(-2e)M-$n,  where M=exp(4B)x2+p2=px2+p2= 
M ( p ) ,  p > 0. We have to show that {M(p) Ip  E C\( - OO,~]}  is a type-A family in Kato's 
sense. For f~ 9 we have 

2 2  2 2  1 2 3  x j p i  + p i x i  =n(xjpj+pixi)  -2, 

x:p' -p?xT = 2i(xipi + p i x , ) ,  
i = 1, . . . , n, 

(3.8) 

(3.9) 

hold on 9 ( N 2 ) ,  the domain of N 2 .  

the left, and using (3.9) we obtain, setting p = p exp(i+b), 
For suchf we can move the operators in the inner products in (3.8) from the right to 

n 

i = l  
I I ~ ( ~ ) ~ I I ' = ~ ' I I X ~ ~ I I + I I P ~ ~ I ~ + ~ ~  COS 4 1 ([xipi+pixi + 2  tan +b]'f,f) 

(3.10) 

Since the right-hand side of (3.10) iswell definedforfE 9, we conclude that (3.10) holds 
for such f. Consequently we have 

p211~2fll 6 I l ~ p ) f I l ~  + [pn(3 +sin2+b)/(2 cos + ) I I I ~ I I ~  (3.11) 
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for each f~ 9 and I$/< fr. Since M ( P ) ,  P > 0, is self-adjoint on 9, it follows from 
(3.11) that the operator yr', Y E @ ,  Iyl<P, is relatively bounded with relative bound 
smaller than one with respect to M ( P ) .  Thus (see Kat0 1966, ch 7) {M(P + y ) (  Irl C P }  is 
a self-adjoint type-A family. Since 0 can be chosen arbitrarily large, we see that the 
analyticity domain A of { M ( [ ) ~ ~ E A }  contains the open right half plane. Now let 
lo E C, Re 50 > 0, Im 50 > 0. Then M(&J is a member of our family and we note that yx2, 
IyI < is M(So)-bounded with relative bound smaller than one. Thus the analyticity 
domain can be extended to the open circle around 50 with radius (yl .  Making Im 50 large 
and Re lo small, we thus reach each point in the open second quadrant in C, as well as 
the positive imaginary axis except for the origin. A similar reasoning applies to the third 
quadrant and the negative imaginary axis. Thus A 3 C\( - OO,~] ,  which proves the first 
part of the theorem. 

Since we are dealing with a type-A family and N has compact resolvent, it follows 
(Kato 1966, ch 7, theorem 2.4) that N ( 8 )  has compact resolvent, and consequently its 
spectrum consists of isolated eigenvalues of finite multiplicity (Kato 1966, ch 3, 
theorem 6.29). A standard argument based upon the unitarity of V(8) ,  8 real, and the 
analyticity of isolated eigenvalues as a function of 8 (Reed and Simon 1978, proof of 
theorem 13.36) results in the invariance of the eigenvalues of N under complex 
dilatation transformations. 0 

The analyticity domain IIm 81 < r / 4  is indeed the maximal one. The eigenfunctions 
of N consist of polynomials times exp( -i.r'), and they lose the square integrability 
property if JIm e )  = 77/4 in exp(-fe'$'). 

4. Spectral properties of the dilated Hamiltonian 

In this section we study the spectral properties of the Hamiltonian (2.10). We start with 
Ho = f p f + H o s c  as given by (2.13). Thus let TI = ip? be the electronic kinetic energy 
operator, self-adjoint on the domain a1 c X I  = Lz(R3). Since 91 is invariant under 
dilatation transformations (Aguilar and Combes 1971), we have for real 8 TI(@= 
U(8)Tl U-'(8) = exp( -28)T1, which operator remains closed on B1 for every 8 E C. 
Further, let Hosc = ON be the two-dimensional harmonic oscillator Hamiltonian, 
self-adjoint on 9' c %'z = L'(1W'). In 0 3 we found that Hosc is dilatation analytic and 
that HosC(t9), [Im 81 < r / 4 ,  is closed on 9'. We now set (for operator tensor products see 
Reed and Simon (1972, ch 8.10)) 

Ho(e) = T1(e) o rz +r1 o Hosc(e), IIm 81 < ~ / 4 .  (4.1) 
This operator is defined on V(910 3 2 ) ,  the set of finite linear combinations of elements 
of 91 0 9 2 .  

Since TI(@ and Hosc(t9) are strictly m-sectorial, it follows that the spectrum of the 
closure f i o (8 )  of Ho(S) is generated by all possible sums of points of the spectra of Tl(8)  
and Hosc(f?) (Reed and Simon 1978, ch 13.9). The spectrum of Tl (8 )  consists of a 
half-line starting at the origin and going off at an angle - 214 ($ = Im 8 )  with respect to 
the positive real axis. Consequently, the spectrum of Go(@) consists of a set of such 
half-lines, each starting at a harmonic oscillator eigenvalue lo, 1 = 0, 1,2,  . . . (see figure 
1). We now show that 9 ( 8 ) ,  the domain of &,(e), is independent of 8. 

Lemma 1. Let Ai be closed with domain Lai c Xi, i = 1,2 ,  and let B be closed on a 
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Figure 1. The spectrum of &(e) in the complex energy plane. It consists of a set of 
half-lines going off at an angle - 24. 

domain Ed@), 9 2 = 9 ( B ) ~  2 2 .  Let A be the closure of A =A1 O1~+11 O A Z  and 
9 (A)  its domain. Suppose that B is Az-bounded with relative bound a < 1. Then B, 
the closure of -11 0 B, has domain 9(8) 3 9(A)  and B is A-bounded with the same 
relative bound a. 

Proof. The dense set V(g1 0 DZ) c 2= X1 0 2 2  is contained in both 9 ( A )  and 9(B). 
Let {f,,} c V(g1 0 5BZ) converge to f~ 9(A).  Then 

IIB(fn -fm)II = 11-11 o ~ ( f n  -fm)II all11 ~ A z ( f n  - f m ) l l +  bllfn - fml l  

a I I~(fn -fm)II+bIIfn -fmII = alIA(fn -fm)II+ bIFn -fmIl* 

Thus {Bf,,} is a Cauchy sequence, and since B is closed we have f~ 9(8) and 
Bf = Bf,,, i.e. 9(B) 2 9(A). A similar estimate gives 

I l~f f l l l~~l l~f f l l l+~l l fn l l  so that IlBfll s .ll~fIl + Wll. 0 

Corollary. Let Ai and B be as in the lemma. We set Az(A) = AZ + AB, IA I < a-1 and 
A(A) = A 1  0 Iz+Il 0 Az(A). Then 9[A(A)], the domain of the closure of A(A), is 
independent of A, i.e. equal to a(&. 
Proof. Since B is A-bounded with relative bound a < 1 and 9(B) 13 9(A),  it follows 
that A'@) = A  +AB is closed on 9(A).  Since A(A) and A'(A) are both the closure of 
A@), defined on V(91O %),they must coincide. Hence 9[A(A)] = 9[A'(A)] = 9(A).  

U 

Theorem. The domain 9 ( 8 )  of G0(8) is independent of 8, IIm 8 / < ~ / 4  and 
(R(8)l IIm 81 < ~ / 4 }  is a dilatation analytic family. 

Proof. We set Ho(8)=exp(-28)M(B)-l where M ( 8 ) =  T I O I z + d 1 0  
[exp(48)ix; + $ p i ]  and M(1) = TI 0 -12 +I1 0 Host. Since the multiplication operator 
x i  is self-adjoint on L2(rWz) with domain strictly larger than 9(Ho"), we can apply the 
above results with A1 = Tl, Az = Hosc and B = ix;. Using the method of Q 3, we thus 
obtain the announced results. U 

We now turn to the interaction term V(x1 -px2)  in (2.11). 

Theorem. V(xl -pxz )  is fio-bounded with arbitrarily small relative bound and H is 
self-adjoint on 9(fio). 
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Proof. A standard argument to show that V is relatively bounded with respect to the 
total kinetic-energy operator on L2(Rs) runs as follows. Let T2 be the closure of -5aXz 
on L Z ( R 2 )  and is the closure of -$A, A 
being the Laplacian on L2(R5). Now everyfe 9 ( F )  is contained in L q ( R s ) ,  2 S q  < 10, 
(Reed and Simon 1975, theorem 9.28) and llfll, S allFf/l+bllfll with arbitrarily small 
a > 0. V can be written as V = Vl + V2 with VI E Lp(Rs) ,  1 S p  < 3 and V ~ E  L"(R5). 
Thus f o r f E 9 ( F ) ,  ~ ~ V ~ f l ~ ~ ~ ~ V l ~ ~ p ~ ~ f ~ ~ ~ ,  p - ' + q - ' = $ ,  6 < q <  10, and 

1 2  

the closure of T = Tl 0 I2 + Il 0 T2. In fact, 

IIvfll S allvlllPll~fll+ (bllV1llP +IIV2llm)llfll. (4.2) 

In particular,, 3 ( ~ )  3 9 ( F ) ,  
Next we show that 9 ( F )  2 9(Ro). This follows from the inclusion 9 ( H o s c )  c 9 ( T z )  

so that V3(Tl) 0 9 ( H o s c ) c  V9(Tl) 0 9(Tz ) .  Now let {fn}c V9(Tl) 0 9 ( H o s c )  
converge towards f~ ~(Ro). Since 

IIT(fn-fm)IIsIIE$Ti OIz+(1/~)11 0 ITosc+ ll(fn -fm)II 

~ ( m a x { l ,  1/w})IIHo(fn -fm)ll+llfn -fmll, 
it follows that { 7''") = {Ffn} is a Cauchy sequence. Consequently f E 9( F) ,  i.e. 9(fio) c 
3 (F ) ,  and we also have 

1IF.I (max{l, l /wI ) l l~d l+ I l f l l .  (4.3) 

W f i O ) .  0 

This, together with (4.2), results in the Ho-boundedness of V with arbitrarily small 
relative bound. Since 9( V) 3 9(R0), this implies the self-adjointness of H on 9 = 

Lemma 2. The unitary operator U(p) = exp(ipp1. x2), p ER, maps D = 3@0) onto 
itself, and Ro(p) = U(p)H0U-'(p) is self-adjoint on 9. 

Proof. There is a set 9 c 9,9 dense in X, such that U-'(p)f E 9 for f E 9 and for which 
(notation PI = (~11,  ~ 1 2 ~ 0 ) )  

Ho(p)f= U(dHoU-'(p) f= ( f i o + $ p 2 w p ^ : O ~ z + p o P l  P2)f 

= (Ho + H1 ( p  )If. 
Since 9(@: 0 1 2 )  and 9 ( h l  . p z )  contain 9, it follows that H&)f is defined for every 
f~ 9. Now let (A, p 3 0 )  

K (A, p )  = Go + $A@: o rZ + &UI~ o p: = Ro + L(A, p 1. 
By repeated use of relative smallness arguments we find that K(A, p )  is self-adjoint on 
9, We now set 

HoO=K(A,pL+Hi(p)-L(A, p ) = K ( A , p ) + M ( A , p , p ) .  

There exist Ao, pO>O such that M(Ao, po, p )  SaL(A0,  po) for some a < 1. But then, 
since K(A, p )  =Ro+L(A, p ) ,  we have for f~ 9 

I I M O o ,  PO, p)fII aIIL(Ao, po) f I I  =S aIIK(Ao, po) f I I+  awIlfII 

so that Ho(p )  is self-adjoint on 9. Now let {fn}c 9 converge towards f~ 9. Then 
Ho(p)ffl converges towards Ho(p)f and RoU-'(p)f, = U-'(p)Ho(p)fn has a limit. 

0 Consequently ~ - ' ( p ) f , ,  converges to an element of 9. 
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We now turn to the dilated operators V(8)  and I f , ( 8 ) .  F o r f c  9 and real 8 we have 
V ( 8 )  Vf = V(8)  U(8)f with V(8)  = exp( - 8) V (for Coulomb potentials). From now on 
we shall omit the closure sign over Ho(8), H ( 8 ) ,  etc. 

Proposition. V(8) is Ho(8)-compact and K ( 8 )  = V(8)[l +Ho(8)]-' is compact analytic 
for 8 E C with IIm 81 < r / 4 .  

Proof. The extension of V(8) to complex 8 is well defined for every f ~ 9 ,  so that 
K ( 8 )  is a bounded operator. We now show its compactness. Since V(xl -pxz )  = 
U ( - p ) V ( x l ) U ( p ) ,  we have ($<cx<l ,a+p=l )  

K ( 8 )  = exp(-8)U(-p)V(xl)U(p)[l + H ~ ( ~ ) I - '  

= exp(- e ) u ( - p ) v ( x l ) ( i  +p:)-"(1 

x (1 + H O ~ ~ ) @ ( I  +p:)*(i +H~)- ' ( I  + ~ ~ ) u ( p ) [ i  +H~(B)]-'. 

As V(xl)(l +p:)-" is compact on L2(R3)  and (1 +Host)-' is compact on Lz(Rz) ,  their 
product is compact on 2'. Since (1 + Host)' c (1 + Ho)' and (1 + p:)" c (1 + Elo)"', it 
follows that (1 +Hosc)'(l +p:)"(l +Ho)-' is bounded, as is the case for (1 + 
Ho)U(p)[l +Ho(8)]-' since U ( p )  maps 9 onto itself continuously. Thus K ( 8 )  is the 
product of a compact operator and bounded operators and consequently is compact. 
Since V(8) is analytic in 8 as a map from 9 into X and [1+&(8)]-' is analytic in 8, it 

0 follows that K ( 8 )  is compact analytic with analyticity domain IIm 81 C r / 4 .  

Theorern 3. ( H ( 8 )  = Ho(8)+ V(8)l IIm 81 < r / 4 }  is a dilatation analytic family. 
(+,,,[H(8)] = (+,,,[Ho(8)] (the half-lines in figures 1 and 2), (+d[H(8)] has as only possible 
accumulation points the various thresholds lw, I = 0 ,1 ,2 ,  . . . and the points of (+d[H(8)] 
(i.e. the isolated eigenvalues of H ( 8 ) )  are independent of 8 (as long as they remain 
discrete). The singular continuous spectrum of H = H(0)  is empty, i.e. (+,(El) = (+ac(H). 

Proof. Since V ( 8 )  is Ho(8)-compact it is Ho(8)-bounded with arbitrarily small relative 
bound, so that the dilatation analyticity follows. The invariance of the essential 
spectrum and the stated properties of (+d[H(8)] are further consequences of relative 
compactness and dilatation analyticity, as is the absolute continuity of the continuous 

0 spectrum of H (see Aguilar and Combes 1971, Balslev and Combes 1971). 

In order to learn more about the discrete spectrum of H ( 8 ) ,  we write it in the form 
(2.12). Thus 

which is H ( 8 )  with p = 0. Theorem 3 still applies, but now we know the exact location of 
vd[H1(8)]. It consists of eigenvalues E,,, = E,, + lw, 1 = 0, 1,2,  . . . , E,, being an atomic 
eigenvalue. Since the atomic eigenvalues accumulate at zero, it follows that each 
threshold lw is an accumulation point of (+d[H1(8)]. A picture of the situation is given in 
figure 2. We obtain H ( 8 )  by perturbing Hl(8 )  with W(8):  

Hl(e)=Ho(8)+ v(xl, e )=Hat (8 )@Iz+II  @ ~ ~ ~ ~ ( 8 ) ,  (4.4) 

H ( e )  = m e )  + w(e). (4.5) 

W(8)  is H1(8)-compact since both V(xl, 8 )  and V(xl - p x z ,  8 )  are Ho(8)-compact and 
( E >  IeoI) 

w(e)[E + ~ ~ ( e ) ] - '  = w ( e ) [ E  +H~(~)]-'[E+H~(~)][E+H~(~)]-', 
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Figure 2. The spectrum of HI(@). Crosses are eigenvalues, solid lines continuous spectrum. 
Note that for w <(e,(, e, +U is on the negative real axis. Positive eigenvalues are expected 
to turn into resonances under the perturbation W (indicated by dots). 

which is the product of a compact and a bounded operator and hence is compact. Thus 
W ( 6 )  will leave the essential spectrum invariant but the discrete spectrum may be 
changed. In fact, we expect the positive eigenvalues to acquire a negative imaginary 
part, i.e. to turn into resonances, whereas the negative eigenvalues may be shifted or 
disappear. We show in the next section that H ( 6 )  still has an infinite number of negative 
eigenvalues, which, of course, accumulate at zero. 

5. The discrete spectrum of H and photoionisation 

An H-atom placed in a constant homogeneous electric field does not possess any bound 
states. In fact the original bound states have turned into resonances. A suitable 
extension of the dilatation analytic method has recently been applied to this 
phenomenon (Herbst 1979). 

A related problem is the following: what happens to the bound states of an atom 
when it is placed in a homogeneous sinusoidally oscillating electric field E(t)? In the 
simple case of an electron bound by a (Coulomb) potential V(n) and under the influence 
of such a field, the Hamiltonian is given by ( E @ )  = -&A(t)) 

H ( f )  =$b-eA(t)]*+ V(.r), (5.1) 

H"' = ;p2 + V(x) ,  

which is unitarily equivalent to 

(5.2) 
the connecting unitary operator being given by 

W(t> = exp[i eA(t) .XI. (5.3) 
Thus H ( t )  possesses bound states, but this result is not relevant to the question whether 
the time evolution U ( f ,  to) associated with H ( t )  causes the electron to become asymp- 
totically free for a given arbitrarily chosen initial state. An answer to this problem can 
be obtained by examining the wave operators associated with U ( f ,  to) and the cor- 
responding 'free' evolution Uo(t, to), the 'free' Hamiltonian being 

H&) =-&I -eA(t)12. (5 -4) 
The existence proof for the wave operators follows a standard pattern (apart from the 
modification needed in Uo(t, to) to take into account the long-range nature of the 
Coulomb interaction (Dollard 1964)). If the wave operators are moreover complete, 
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then we can define the scattering states to be the states in their range B. If B coincides 
with the whole Hilbert space L2(R3), then the electron becomes asymptotically free (is 
ionised) with probability one. If not, then its orthoplement B' can be said to contain 
the bound states of the problem. 

In an analogous case (PrugoveEki and Tip 1974, 0 4) it was shown that the wave 
operators can be defined in terms of the evolution operators associated with the Floquet 
Hamiltonians (both full and free) of the problem. The same can be done here, so that 
B ' is precisely the bound-state subspace of the Floquet Hamiltonian HF' associated 
with U(t, to). Now HF' is believed to be some limiting form of the second quantised 
Hamiltonian (Shirley 1965, Swain 1973), and within this context we state the main 
result of this section. 

Theorem 5.1. The Hamiltonian H given by (2.10) possesses an infinite number of 
eigenvalues with negative energy. They accumulate at zero. 

Proof. The idea behind the proof is to show that the negative eigenvalues of H are those 
of a system consisting of a particle in a potential with an attractive Coulomb tail. In 
order to do so, we use the Feshbach projection operator formula (see Newton 1966, 
P 496) 

( 2  - H ) - * = ( z - H Q ) - ~ Q + [ P + ( z  - ~ Q ) - ~ Q H P ] G ~ ( Z ) [ P + P H ~ ( ~ - H Q ) - ~ ]  ( 5 . 5 )  

where 

2 dH), Hp = PHP, HQ = QHQ, 
G ~ ( z )  = [ z - Hp - PHQ ( 2  - IfQ)-' QHP]-'. (5.6) 

The projectors P and Q = 1 - P are defined through P = I1 0 9, where 3 is :he 
projector upon the ground state of H"". Since the latter is non-degenerate, P is 
one-dimensional, We start by noting that (6 = 12-$; Hl = Hat+HoSC, see (2.13)) 

QH1Q =Hat 0 6 + I1 0 6H""d.  (5.7) 

Its spectrum differs from that of H1 in that vess(QHIQ) starts at w instead of zero, since 
the oscillator ground state is annihilated by 6. In addition, QHIQ has discrete 
eigenvalues A, = E ,  + w.  In particular, w is their accumulation point. (Of course there 
are also continuum-embedded eigenvalues above w. )  Since W is H1-compact, the same 
is true for OWQ with respect to QHIQ on ZQ = (2%. Thus w remains the only possible 
accumulation point of the discrete spectrum of HQ = QHIQ + QWQ. In particular, HQ 
has only a finite number of eigenvalues (of finite multiplicity) in the interval (-CO, w - 
S ) ,  S small and positive. We now remove the latter in order to make PHQ(E - HQ)-l 
QHP a non-positive operator for E s w - S .  Thus let n, be the eigenprojector of HQ 
corresponding to the eigenvalue pi c w - S ,  j = 1, , . . , p ,  and let lJ = I;,"=1 IT,. Note that 
I-I% c ZQ. We now set P = P +  7~ and 0 = 1 - P and we consider ( 5 . 5 )  and (5.6) with P 
and Q replaced by P and 6, respectively. Then for z = E, E real, E < w - S, ( E  - HQ)-l 
has no singularities, so that the latter, if present, must come from 

GP(z)=[z - H p  -PHO(Z -H&)-'dHF]-' .  (5 .8 )  

Now, for E s w - 8, 
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whereas 

H p  = PHP + IIHP + PHII + IIHII = Hp + finite rank perturbations. 

The spectrum of Hp is that of 

Hefi = i!~? + Vefi(x1) 

on L2(R3), where 

V,fi(xd = I dxz V(x1 -~xz)luo(xz)l~ 
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(5.10) 

(5.11) 

= - (Z/T) I dx2 ( x l - p x ~ ) - ’  exp(-xi). (5.12) 

This potential has an attractive Coulomb tail, and consequently has an infinite set of 
negative eigenvalues accumulating at zero. This behaviour is not changed by the 
finite-rank perturbations in (5.10), whereas the non-positive operator (5.9) can only 
lower their values. In principle, this operator can shift the accumulation point, but we 
know already that the lowest accumulation point of (T&) is zero. Thus we find that 
Gp(z), and hence (z  -IT)-’, has an infinite number of negative poles of finite multi- 
plicity, accumulating at zero. Consequently the same is true for the negative eigen- 
values of H. 

Since H possesses bound states, it will be evident that a system which is in some state 
W(0) at time t = 0 need not be ionised with probability one as t tends to infinity. This 
clearly depends on whether Q(0) contains bound-state contributions. On the other 
hand, it is sometimes believed that the ionisation probability tends to one as the field 
intensity (i.e. the number of photons in the initial state) increases. We shall now prove a 
result in this direction. Let “(0) be of the form 

* ( O )  = U, x UI = W,l (5.13) 

where U,, is an eigenstate of Hat with eigenvalue E ,  and uI an eigenstate of Host with 
eigenvalue 10. Then, as 1 increases, W(0) becomes orthogonal to each eigenstate of H 
with eigenvalue smaller than some real constant A. 

Theorem 5.2. Let P be the projector upon the bound-state subspace of X spanned by 
the eigenvectors #J~ of H with eigenvalues A j  smaller than A. Then PQflI tends to zero in 
norm as 1 tends to infinity. 

Proof. We take 1 so large that the eigenvalue E,, = E ,  + lw of H1 is larger than A. Since 

we have 
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Now, since un(xl), and hence Iu,,(x1)12, is an element of Lm(R3), 
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where we have used the well known recursion relations for Hermite functions. Thus 

and the right-hand side tends to zero with increasing 1. 0 

This result is still not completely satisfactory, since there may be bound states of H 
with arbitrarily large energy. On the other hahd, we expect the corresponding states of 
H to turn into resonances under the perturbation W, so that only negative-energy 
bound states would remain. The situation here is similar to the one encountered in 
dealing with autoionising atomic states (although there positive-energy bound states or 
resonances do not occur (see Simon 1972)). In fact the analysis given by Simon (1973) 
applies here as well. In particular, this is the case for his derivation of the 'Golden Rule' 
expression for the imaginary part of the leading term in a perturbation expansion of 
complex eigenvalues. 

6. Discussion and outlook 

6.1. Dilatations and resonances 

In Q 2 we made a formal unitary transformation in order to bring the Hamiltonian into a 
form where relative compactness properties of the interaction W could be used. In fact, 
this unitary transformation was given a precise meaning by lemma 2 of $4 .  It is 
important to note that the unitary operator V(A) = exp(iApl . x2), implementing this 
transformation, is invariant under dilatations. This property is quite important, since 
unitarily equivalent Hamiltonians may have different spectra upon complex dilatation. 
An example is the following. Consider a particle in an attractive potential with no 
bound states, and suppose that the wave operators exist and are unitary. Then the full 
Hamiltonian is unitarily equivalent to the kinetic energy operator. Now the former 
may, upon complex dilatation, have complex eigenvalues but the latter does not. 
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A second possible dilatation transformation would be to dilate only the electronic 
position and momentum operators but not those of the oscillator. This cannot be done 
with the Hamiltonian (2.10), since the potential is not analytic under such trans- 
formations (also U(A) becomes unbounded). The situation is different for the Hamil- 
tonian (2.7). If we scale away the factor U,  we have a zero-order Hamiltonian of the 
form 

H, (e )  = $p: exp( - 20) o + o [ $ ( p i  + xi) - 1 I. (6.1) 

Again, sectoriality properties can be used to obtain its spectrum for complex 8 (the by 
now familiar set of half-lines). The potential V(xl, e) = exp( - e) V(xl) is &(e)- 
compact and causes no problems, so that only the perturbation 

HpW= -exp(-8)Apl . p2 ,  A =a/(a2+&), (6.2) 

remains to be considered. 

Proposition. Hp(0)  is Ha(@-bounded with relative bound smaller than one. 

Proof. We omit the - 1 in the oscillator Hamiltonian for notational convenience. Then, 
writing 

exp(e) = P expW), exp( - 28) = a + ib, a = p-2 cos 24, 

b = p-2 sin 24, 

we have for f E !iB[H, (e ) ]  
IIH, (e)fl12 = Il[$ap: +&P: + x:)M12 + Ilfbp:fll'. 

Since 

* P1 Pz 6 $(ccP: + P -%I, 

l lHP @MI2 6 (A/P)ll($ccP: + icc -'P:)fll 

cc BO, 
we have (u, T 20, ( J + T  = 1) 

6 (A/p)[(ccu/laI)ll$aP:~?fll+ (cc~/lbl>ll%P?l\ + PL-'114P:flfl11 

C (A /p ) (~u / la l  +cc~/161+cc-~)I(H,(e>fl1~. 

Taking U = cos2 24, T = sin2 2 4  and p = p - l ,  we obtain 

llHp(e)fl12 s (A/P)(PP~~COS 241+ w21sin 241 + c1)IIHa(e)fl12 
s 3A llH, (e)fl12. 

Since A < 5 (see 0 2), we have obtained the announced result for a, b both non-zero, the 
case that one of the two vanishes being even simpler. 

According to this result (H(8 )  = Ha(8)  +&(e) + V(e)le E C} is a dilatation analytic 
family. It must however be remembered that, since & ( e )  is not relatively compact, the 
essential spectrum is in general not invariant under the perturbation H p ( 8 )  (this is 
already the case for real e). 

We note further that the above type of estimate shows that it is possible to make an 
analytic continuation in the coupling constant A. 
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6.2. Applications to photoionisation and scattering processes 

In expressions related to photoionisation probabilities and scattering amplitudes, 
matrix elements of the resolvent (2 -H)-19 z = E + iE, E real, appear: 

(6.3) WZ) = ([z -Wf, g )  = ( [z  - ~ ( e ) i - ' u ( e i f ,  u ( 8 ) g ) .  
Here U(8)  is a unitary operator of the dilatation group. If the states f(8) = U(8) f  and 
g(8 )  = U(8)g  can be continued analytically for complex 8, then we can continue O(z)  
into the lower half plane and it becomes possible to disentangle pole contributions close 
to the energy E from the complex dilated resolvent. 

Thus, if we can calculate the corresponding complex eigenvalue and eigenfunction 
of H(t9) with some degree of accuracy, then a pole approximation to the resolvent can 
be expected to give a reasonable approximation to the resonant structure of Q(z )  for 
energy E near the pole. In a future publication we intend to discuss resonant 
two-photon ionisation processes in this manner. 

Another, even more fundamental, aspect of ionisation and scattering processes is 
the existence and completeness of the wave operators. We mention, without giving the 
(straightforward) proof, that the wave operators associated with the full Hamiltonian H 
and the channel Hamiltonian Ho (see 0 2) indeed exist. The only complication is the use 
of a modified free evolution operator as first given by Dollard (1964), which is necessary 
due to the long-range nature of the Coulomb interaction. We did not investigate the 
completeness property but it seems that a suitable modification of Enss's method (Enss 
1978a, b) should work. 

6.3. Man y-electron systems and resonance spectroscopy 

The equivalent of the Hamiltonian (2.10) for a system consisting of N electrons and an 
infinitely heavy nucleus with charge 2 is 

H = H ' ~ +  H'"+ w = H ~ +  w (6.4) 

where now, using the index 0 for oscillator variables, 

Elosc = w [i( p: + x:) - 13 (6.6) 
and 

(6.7) 

We plan to give a full discussion of the dilatation analytic properties of this system on 
another occasion, but here we want to mention an interesting phenomenon that does 
not occur in the one-electron case. The point is that now Hat, upon complex dilatation, 
possesses complex eigenvalues E,, the atomic resonances. We can imagine the situation 
that the eigenvalue E, + w of No is close to a second resonance eigenvalue E,. Then W 
will cause a relatively strong coupling between the states corresponding to these 
complex energy eigenvalues. Recent experiments (Langendam and van der Wiell978) 
confirm this idea. The experimental set-up is such that an atomic system (e-+Ne) in a 
state n ( E , )  is brought to a state 1p1 ( E , )  by absorption of a photon. A resonance structure 
is then observed when the photon frequency matches the difference in the real parts of 
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the energies E ,  and E,. By making a suitable pole approximation to the resolvent 
[z-H(O)]-',  it i s  possible to obtain a reasonable description of this resonance 
behaviour (A Tip, work in progress). 
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